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Number of Classic magic squares of order m:  N(m) 

Number of magic Series of classic magic squares of order m:  S(m) 

c-Factor of classic magic squares of order m:  c(m) 

Probability for a line (m disjoint numbers) to be magic:  p(m) 
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Asymtotic approximations (very large m): 
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The small factor  𝑐(𝑚) ≈ 0.185 ⋅ (𝑚 − 1)  is still an experimental result. 
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Probability P(m) for a classic number square to be magic: 
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